

Датчики крутящего момента МА20В

Руководство по эксплуатации

СОДЕРЖАНИЕ

1 ОПИСАНИЕ И РАБОТА ДАТЧИКА	3
1.1 Назначение	3
1.2 Устройство и принцип работы	3
1.3 Технические характеристики	5
1.3.1 Электрические и метрологические параметры	6
1.3.2 Параметры устойчивости к климатическим и механическим внешним воздействиям	8
1.3.3 Механические параметры и эксплуатационные ограничения	8
2 ИСПОЛЬЗОВАНИЕ ПО НАЗНАЧЕНИЮ	11
2.1 Меры безопасности	11
2.2 Монтаж	11
2.3 Электрические соединения.	12
2.4 Порядок работы	14
3 ВОЗМОЖНЫЕ НЕИСПРАВНОСТИ И СПОСОБЫ ИХ УСТРАНЕНИЯ	14
4 ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ	
5 ХРАНЕНИЕ И ТРАНСПОРТИРОВАНИЕ	14
6 УТИЛИЗАЦИЯ	15
7 СОДЕРЖАНИЕ ДРАГМЕТАЛЛОВ	15
8 ДОПОЛНИТЕЛЬНОЕ ОБОРУДОВАНИЕ	15

Настоящее руководство по эксплуатации (РЭ) предназначено для ознакомления с устройством, принципом действия и правилами использования датчиков крутящего момента (датчиков) MA20B-F и MA20B-G и удостоверяет гарантированные предприятием-изготовителем параметры и технические характеристики.

ВНИМАНИЕ! Перед установкой и включением датчика изучите настоящее руководство по эксплуатации.

1 ОПИСАНИЕ И РАБОТА ДАТЧИКА

1.1 Назначение

Датчики MA20B предназначены для измерения крутящего момента, создаваемого ручным или механизированным инструментом для затяжки резьбовых соединений.

Номинальный диапазон измерения: - M_E ... + M_E , где M_E – верхний предел измерений датчика¹.

Датчики MA20B имеют расширенный диапазон измерений: -1,07·M_E ... +1,07·M_E. Знак "плюс" соответствует кручению по часовой стрелке, знак "минус" — кручению против часовой стрелки.

Датчики MA20B-F имеют наружный присоединительный квадрат, датчики MA20B-G – внутренний присоединительный квадрат.

Обозначение датчика состоит из названия серии "MA20B-F" или "MA20B-G" и величины верхнего предела измерений, разделенных знаком " – ". При этом, моменты от 1000 H м включительно указываются в кH м с добавлением индекса "к".

Примеры условных обозначений:

датчика крутящего момента MA20B с наружным присоединительным квадратом и верхним пределом измерений 800 H·м:

датчика крутящего момента MA20B с внутренним присоединительным квадратом и верхним пределом измерений 1500 H·м:

Верхний предел измерений датчика МА20В выбирается из ряда приведенного в табл. 1

Табл. 1 – Верхние пределы измерений датчиков MA20B

5	6	8	10	12	15	20	25	30	40
50	60	80	100	120	150	200	250	300	400
500	600	800	1ĸ *	1,2к	1,5к	2к	2,5к	3к	4к
5к	6к								
* – Индекс "к" обозначает "кН·м".									

1.2 Устройство и принцип работы

Датчик включает в себя тензоэлемент торсионного типа (торсион) с наклеенными на него тензорезисторами, плату питания и обработки данных, защитный корпус. На корпусе размещен разъем питания и передачи данных.

В процессе работы торсион датчика подвергается нагружению крутящим моментом, в результате чего происходит его деформирование и возникает разбаланс тензометрической мостовой схемы (тензомоста). Тензомост своим выходом соединен с платой, которая усиливает сигнал и преобразует его в цифровой сигнал, содержащий также идентификационный номер датчика, его температуру, служебную информацию.

Для преобразования сигнала датчика в требуемый выходной сигнал (цифровой или аналоговый) применяется вторичное оборудование — блок индикации Т42 с заданным выходным интерфейсом или декодер. Доступные варианты выходных сигналов и их параметры описаны в разделе 1.3.

Для визуального контроля за измеряемыми величинами используются блоки индикации Т40 и Т41.

¹ Под верхним пределом измерений понимается также "Номинальный измеряемый крутящий момент" датчика.

Рис. 1 – Внешний вид датчиков МА20В-F (слева) и МА20В-G (справа)

ВНИМАНИЕ! Датчики MA20B должны использоваться совместно с инжектором E01. Инжектор входит в комплект поставки.

Инжектор Е01 (рис. 2) используется для питания датчика и передачи сигнала от датчика к вторичному оборудованию (блоку индикации или декодеру).

Рис. 2 – Внешний вид инжектора Е01

1.3 Технические характеристики

Доступные варианты выходных сигналов/интерфейсов и модели вторичных устройств, обеспечивающих их приведены в табл. 2. Габаритные и установочные размеры датчиков и инжектора показаны на рисунках 4, 5, 6.

Табл. 2 – Выходные сигналы/интерфейсы вторичных устройств

Выходной сигнал/интерфейс	Декодер ¹⁾	Блок индикации Т42 ²⁾
USB (WinUSB Device)	T45	
USB-VCOM	_	
Ethernet	_	
CAN	_	
RS-485	T46/RS-485	
RS-232	T46/RS-232	T42
±5 B, ±10 B	T24/±5 B, T24/±10 B	
420 мА активный	Т24/420 мА	
420 мА пассивный	_	
10±5 кГц	T23/10±5 кГц	
60±30 кГц	Т23/60±30 кГц	
120±60 кГц	Т23/120±60 кГц	

¹⁾ Декодер обеспечивает один выходной сигнал выбор (указывается при заказе).

²⁾ По умолчанию блок индикации T42 обеспечивает один выходной сигнал на выбор, но может поставляться с комбинацией цифрового (USB, RS-485) и аналогового выхода (указывается при заказе).

1.3.1 Электрические и метрологические параметры

Класс точности		0,2
Пределы допускаемой приведенной погрешности измерения крутящего момента, включая нелинейность и гистерезис	% от Ме	±0,2 (опция ±0,1)
Температурный уход нуля, на 10°C	% от Ме	±0,05
Разрядность АЦП	бит	16
Частота дискретизации	кГц	5
Напряжение питания постоянного тока	В	1230
Мощность потребления (датчика совместно с инжектором), не более	Вт	5
Идентификация датчика		автоматическая
Цифровой выход USB (WinUSB Device) 1)		
Интерфейс		USB 2.0
Скорость передачи данных (Full-Speed)	Мбит/с	12
Протокол передачи данных		TILKOM
Формат данных		float, fixed point
Цифровой выход USB-VCOM (USB-CDC, Virtual COM Port) 1)		
Интерфейс		USB 2.0
Скорость передачи данных (Full-Speed)	Мбит/с	12
Протокол передачи данных		TILKOM, MODBUS RTU
Формат данных		float, fixed point
Цифровой выход Ethernet 1)		
Интерфейс		10 / 100 Base-TX
Скорость передачи данных	Мбит/с	10, 100
Транспортный уровень		TCP
Протокол передачи данных		TILKOM, MODBUS TCP
Формат данных		float, fixed point
Цифровой выход CAN ¹⁾		
Интерфейс		CAN2.0B
Скорость передачи данных	кбит/с	125, 250, 500, 1000
Программируемый адрес на шине		+
Режим работы		пассивный, активный
Формат данных		float, fixed point
Цифровой выход RS-485 ¹⁾		, ,
Интерфейс		RS485
Скорость передачи данных	бод	2 400 – 115 200
Протокол	17	MODBUS RTU
Гроверка четности		+
Программируемый адрес на шине		+
Формат данных		float, fixed point
Цифровой выход RS-232 ¹⁾		
Интерфейс		RS232
Скорость передачи данных	бод	2 400 – 115 200
Протокол		TILKOM
Проверка четности		+
Формат данных		float, fixed point

Аналоговый выход ±5 В (±10 В) ¹⁾		
Номинальное выходное напряжение при действии крутящего момента равного:		
положительному верхнему пределу измерений	В	+5 (+10)
отрицательному верхнему пределу измерений		-5 (-10)
нулю		0
Электрическое сопротивление нагрузки, не менее	кОм	10
Аналоговый выход 420 мА ¹⁾		
Номинальный вытекающий ток при действии крутящего момента равного		
положительному верхнему пределу измерений	мА	20
отрицательному верхнему пределу измерений		4
нулю		12
Электрическое сопротивление нагрузки активного токового выхода, не более	Ом	100
Частотный выход 10±5 кГц (60±30 кГц, 120±60 кГц) 1)		
Номинальная выходная частота при действии крутящего момента равного:		
положительному верхнему пределу измерений	кГц	15 (90) (180)
отрицательному верхнему пределу измерений	ΝЦ	5 (30) (60)
нулю		10 (60) (120)
Амплитуда выходного напряжения (симметричный меандр)	В	5±1
¹⁾ При заказе вторичного устройства с данным выходом.		

1.3.2 Параметры устойчивости к климатическим и механическим внешним воздействиям

Диапазон температур окружающей среды	°C	+5+50
Относительная влажность, не более	%	80 при 35°C
Атмосферное давление	мм рт.ст.	630800
Диапазон температур окружающей среды в транспортной таре	°C	-10+70
Относительная влажность в транспортной таре, не более	%	95 при 30°C
Допускаемая амплитуда виброускорений в диапазоне 1055Гц в течение 1 часа	M/C ²	40
Допускаемое количество ударов с пиковым ударным ускорением 400 м/с² и длительностью ударного воздействия до 10 мс		1000
Степень защиты по ГОСТ 14254-2015		IP 40

1.3.3 Механические параметры и эксплуатационные ограничения

ME	F _A , кН	F _R , H	М _в , Н∙м	G _{ток} , кН·м/рад	M _{MAX} , % ot M _E	т, кг
525	0,5	10	0,5	2,5		0,6
30100	1,0	30	2,0	26,2		0,6
120250	1,5	80	10,0	51,5		0,7
300500	3,0	120	20,0	159,1	150	1,7
6001,2к	8,0	600	80,0	262,5		1,8
1,5к2,5к	16,0	1 000	150,0	776,7		3,3
3к6к	28,0	5000	300,0	1263,2		5,5

M_E – верхний предел измерений датчика,

F_A – предельно допустимая осевая сила, приложенная к ротору,

F_R – предельно допустимая радиальная сила, приложенная к ротору,

Мв – предельно допустимый изгибающий момент, приложенный к ротору,

G_{TOR} – расчетная жесткость ротора при кручении,

Ммах – предельно допустимый крутящий момент,

т - масса датчика.

Допустимые величины внешних нагрузок (осевой и радиальной сил, изгибающего момента), действующих на ротор, взаимозависимы. Увеличение любой из нагрузок требует пропорционального уменьшения двух других. Указанная зависимость проиллюстрирована на рис. 3.

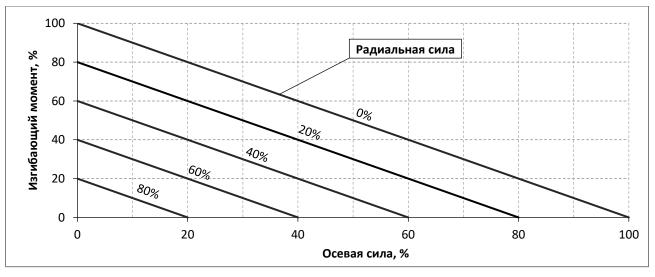


Рис. 3 – Предельно допустимые для датчиков МА20В сочетания внешних нагрузок

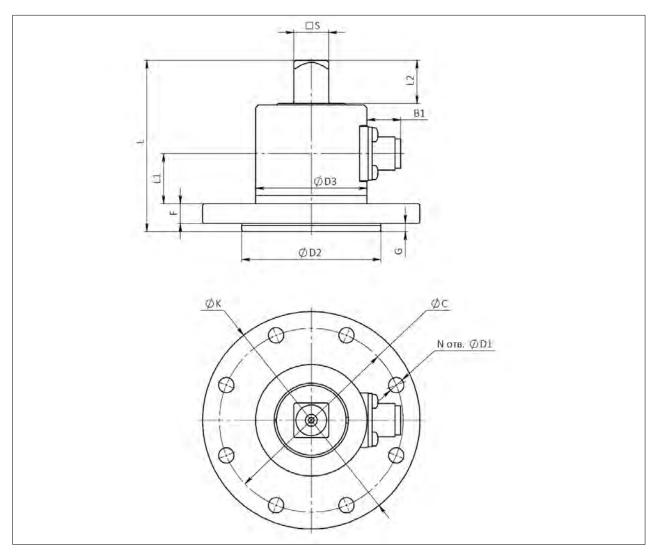


Рис. 4 – Датчики МА20В-F. Габаритные и установочные размеры, мм

M _E	B1	L	L1	ØK	ØD3
525	13	57,0	20	78	40
30100	13	61,5	21	78	40
120250	13	61,5	21	90	46
300500	13	79,0	21	122	60
6001,2к	13	84,0	21	122	60
1,5к2,5к	11	100,0	22	142	78
3к6к	11	126,0	34	175	90

Me	Присоединител	L2	N	ØD1	ØC	F	ØD2 g6	G	
	ISO 1174-2	□S	макс.		~2.	~ •		≈22 90	
525	F10	9,53-0,06	11,0	8	5,5	66	7	Ø50	3,0
30100	F12.5	12,70-0,07	15,5	8	5,5	66	7	Ø50	3,0
120250	F12.5	12,70-0,07	15,5	8	6,4	76	7	Ø60	3,0
300500	F20	19,05-0,08	23,0	12	8,4	104	12	Ø80	3,0
6001,2к	F25	25,40-0,08	28,0	12	8,4	104	12	Ø80	3,0
1,5к2,5к	F40	38,10-0,10	39,3	12	10,5	120	14	Ø90	3,0
3к6к	F40	38,10-0,10	39,3	16	13,0	150	16	Ø110	3,0

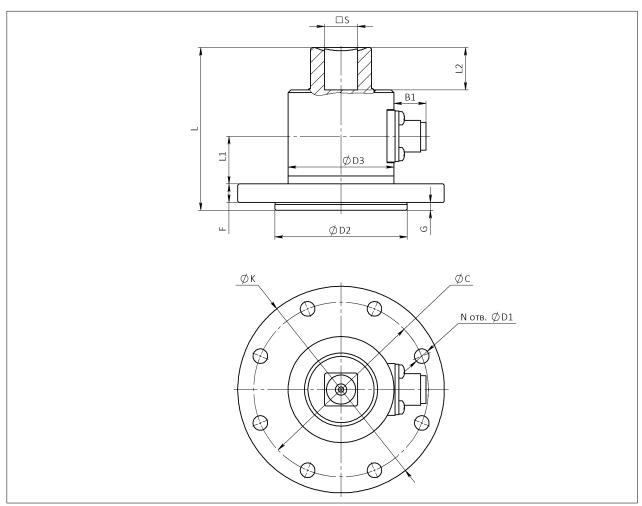


Рис. 5 – Датчики МА20В-G. Габаритные и установочные размеры, мм

ME	B1	L	L1	ØK	ØD3
525	13	57	20	78	40
30100	13	62	21	78	40
120250	13	62	21	90	46
300500	13	79	21	122	60
6001,2к	13	84	21	122	60
1,5к2,5к	11	100	22	142	78
3к6к	11	126	34	175	90

ME	Присоедини квадр	ат	L2 мин.	N	ØD1	ØC	F	ØD2g6	G
	ISO 1174-2	□S	10171111						
525	G10	9,58+0,09	11,0	8	5,5	66	7	Ø50	3,0
30100	G12.5	12,76+0,11	15,5	8	5,5	66	7	Ø50	3,0
120250	G12.5	12,76+0,11	15,5	8	6,6	76	7	Ø60	3,0
300500	H20	19,11+0,13	23,0	12	9,0	104	12	Ø80	3,0
6001,2к	H25	25,46+0,13	29,0	12	9,0	104	12	Ø80	3,0
1,5к2,5к	H40	38,19+0,16	41,3	12	10,5	120	14	Ø90	3,0
3к6к	H40	38,19+0,16	41,3	16	13,0	150	16	Ø110	3,0

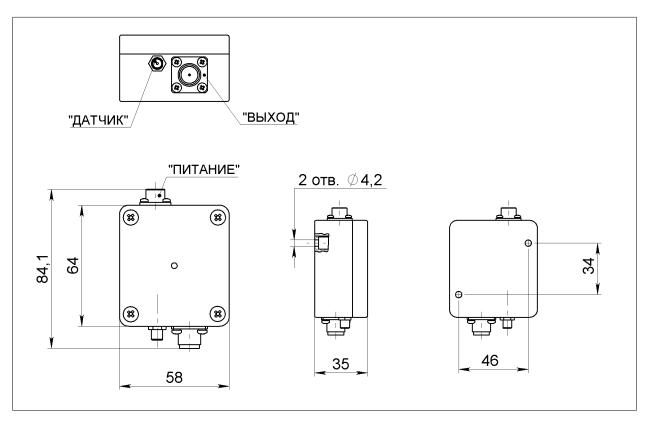


Рис. 6 – Инжектор Е01. Габаритные и установочные размеры

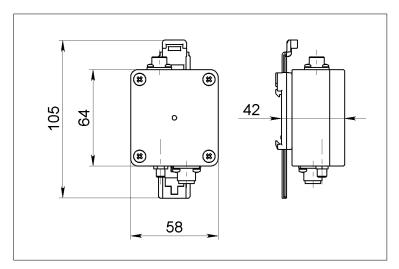


Рис. 7 – Инжектор Е01 с креплением на DIN-рейку 35мм. Габаритные и установочные размеры

2 ИСПОЛЬЗОВАНИЕ ПО НАЗНАЧЕНИЮ

2.1 Меры безопасности

Мероприятия по безопасным методам эксплуатации датчиков MA20B обеспечиваются общими требованиями к инструменту, с которым они используются. Напряжение питания датчиков не является опасным.

Эксплуатация датчиков крутящего момента должна осуществляться персоналом, знакомым с общими правилами работы с измерительным электронным оборудованием.

2.2 Монтаж

Поверхность фланца датчика крутящего момента и сопрягаемая поверхность должны быть сухими, чистыми, обезжиренными.

Перед использованием датчика его присоединительный фланец должен быть закреплен на опорной поверхности при помощи болтов. Диаметр болтов и минимальный момент затяжки приведены в табл. 3.

Табл. 3 – Диаметры и моменты затяжки болтов

ME	Крепежные болты * DIN 933	Момент затяжки болтов, Н ⋅м				
525	M5	4				
30150	M5	7				
120250	M6	10				
300500	M8	25				
6001,2κ	M8	25				
1,5к2,5к	M10	50				
3к6к	M12	90				
* Класс прочности болтов не ниже 8.8						

ВНИМАНИЕ! В целях повышения помехозащищённости датчика не допускается прокладка сигнального кабеля датчика совместно с силовыми кабелями.

ВНИМАНИЕ! При использовании датчика в системах с преобразователем частоты (ПЧ) может наблюдаться нестабильность в работе датчика. Для снижения влияния электромагнитных помех, вызванных работой ПЧ, необходимо использовать рекомендуемый производителем ПЧ моторный дроссель (выходной реактор, синусоидальный фильтр).

Для крепления инжектора в его корпусе предусмотрено 2 отверстия. Для доступа к ним необходимо снять крышку открутив 4 винта. Далее закрепить корпус двумя винтами М4, установить крышку на место, закрутить 4 винта.

2.3 Электрические соединения.

ВНИМАНИЕ! Перед включением датчика убедиться в отсутствии короткого замыкания в сигнальных кабелях. Проверку кабеля на наличие короткого замыкания производить только при обесточенном инжекторе и отключенном индикаторе или декодере, т.к. их вход может иметь низкое сопротивление, что может привести к ошибке при проверке.

Расположение электрических разъемов на датчике крутящего момента и инжекторе показано на рисунках 1 и 2.

Датчики MA20B поставляются с двумя сигнальными кабелями. Кабели имеют метки с номерами. Кабель «1» (длина указывается при заказе, по умолчанию 5 м) используется для подключения датчика к инжектору (рис.8).

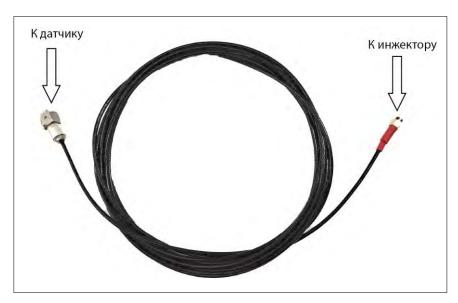


Рис. 8 – Кабель «1» для подключения датчика к инжектору

Кабель «2» (рис. 9) длиной 0,5 м используется для подключения к инжектору блока индикации или декодера.

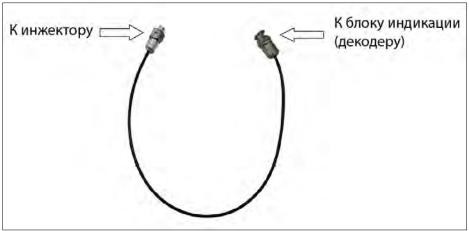


Рис. 9 – Кабель «2» для подключения к инжектору блока индикации (декодера)

Схема подключения датчика MA20B к инжектору и вторичному оборудованию показана на рис. 10. Датчик MA20B подключается к разъему «**ДАТЧИК**» инжектора сигнальным кабелем «1» из комплекта поставки. Разъем «**ВЫХОД**» инжектора используется для подключения блока индикации или декодера с помощью кабеля «2» из комплекта поставки.

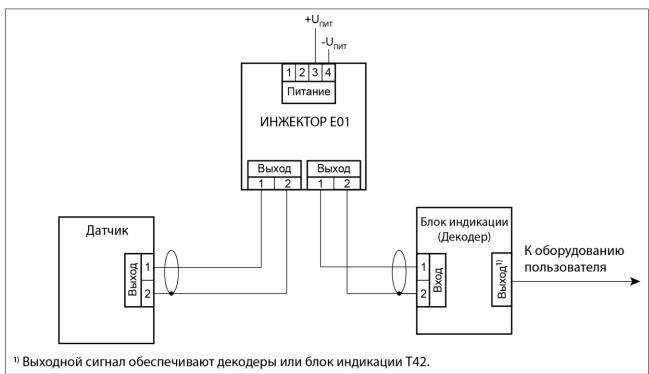


Рис. 10 – Схема подключения датчика МА20В

К разъему «**ПИТАНИЕ**» инжектора подключается блок питания с выходным напряжением постоянного тока 12...30 В. Назначение контактов разъема «**ПИТАНИЕ**» приведено в табл. 4.

Табл. 4 – Назначение контактов разъема «ПИТАНИЕ» инжектора

	Контакт	Назначение
2 0	1	не подключен
	2	не подключен
	3	напряжение питания +1230 VDC
	4	общий

ВНИМАНИЕ! Не допускается включение датчика при наличии короткого замыкания в сигнальном кабеле.

Если электрические соединения выполнены правильно при включении питания на светодиод крышке инжектора загорится оранжевым светом.

2.4 Порядок работы

При использовании компьютера в качестве показывающего и регистрирующего прибора, включить электропитание датчика запустить программу мониторинга измерений на компьютере и производить измерения в соответствии с руководством оператора ПО «Датчик крутящего момента».

При использовании индикатора в качестве показывающего прибора, включить электропитание датчика и производить измерения и наблюдение измерений в соответствии с инструкцией по использованию блока индикации Т40 (Т42, Т41).

При каждом включении электропитания, перед проведением измерений, рекомендуется производить прогрев датчика в течение 1-2 минут.

Если непосредственно после монтажа датчика, при первом включении, наблюдается смещение нуля (в пределах $\pm 5\%$ от номинальной величины крутящего момента) и при этом отсутствует нагружение датчика крутящим моментом, необходимо произвести регулировку. Регулировка смещения нуля может быть выполнена с помощью соответствующей функции программного обеспечения, посредством соответствующей кнопки блока индикации.

ВНИМАНИЕ! Установка нуля осуществляется не в датчике, а в каждом подключенном регистрирующем устройстве (персональном компьютере, блоке индикации). Для предотвращения разночтений при одновременном использовании нескольких регистрирующих устройств, установку нуля следует производить во всех используемых устройствах одновременно при полностью разгруженном датчике.

3 ВОЗМОЖНЫЕ НЕИСПРАВНОСТИ И СПОСОБЫ ИХ УСТРАНЕНИЯ

При возникновении ошибок в работе датчика и/или декодера необходимо:

- 1) убедиться в целостности сигнальных кабелей, отсутствии короткого замыкания в них и надежном присоединении разъемов;
- 2) убедиться в наличии питания инжектора;
- 3) убедиться в отсутствии помех, наведенных на шине заземления.

Для индикации состояния инжектора на его крышке установлен светодиодный индикатор. Сигналы индикатора и действия персонала описаны в табл. 5.

Искажение сигнала датчика может быть вызвано работой преобразователей частоты (или другого импульсного оборудования), особенно при их включении без фильтра. Для проверки работы датчика следует включить его при выключенных источниках помех.

ВНИМАНИЕ! Если нормальную работу датчика восстановить не удалось – обратитесь к производителю оборудования.

Табл. 5 –	Индикация	состояния	инжектор	a
-----------	-----------	-----------	----------	---

Сигнал индикатора	Состояние устройства	Действия персонала (при необходимости)
оранжевый	питание подключено, присутствует сигнал от датчика	-
красный	подключено питание, отсутствует сигнал от датчика	проверить состояние сигнальных кабелей
отсутствует нет питания		проверить подключение блока питания

4 ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ

Датчики МА20В не требуют специального технического обслуживания.

5 ХРАНЕНИЕ И ТРАНСПОРТИРОВАНИЕ

Датчики крутящего момента до введения их в эксплуатацию следует хранить на складах при температуре окружающего воздуха от 5 до 40°C и относительной влажности до 80% при температуре 25°C.

В помещении для хранения не должно быть пыли, паров кислот, щелочей, агрессивных газов и других вредных примесей, вызывающих коррозию.

Транспортирование датчиков производится любым видом транспорта в закрытых транспортных средствах.

Предельные климатические условия транспортирования приведены в пункте 1.3.2 настоящего РЭ.

6 УТИЛИЗАЦИЯ

Датчики не содержат опасных для жизни и вредных для окружающей среды веществ. Утилизация производится в порядке, принятом на предприятии-потребителе датчика.

7 СОДЕРЖАНИЕ ДРАГМЕТАЛЛОВ

Датчики крутящего момента МА20В не содержат драгметаллов.

8 ДОПОЛНИТЕЛЬНОЕ ОБОРУДОВАНИЕ

Вместе с датчиком может быть заказано дополнительное оборудование.

Блок индикации **T42** для визуального контроля значений измеряемых величин с возможностью выбора цифрового или аналогового выхода:

Ethernet USB CAN RS-485 RS-232

±5 (10) B

4...20 мА (активный или пассивный) 10±5 кГц, 60±30 кГц, 120±60 кГц

Блоки индикации **T40** и **T41** (в пластиковом корпусе) для визуального контроля значений измеряемых величин.

Декодеры для получения требуемого выходного сигнала датчика (аналогового или цифрового):

USB RS485 ±5 (10) B

4...20 мА (активный)

10±5 кГц

Сетевой адаптер 12... 30 В для питания датчика.

Тройник для сигнальных кабелей для подключения к датчику двух вторичных устройств (блока индикации и декодера).

Сигнальный кабель произвольной длины (до 100 м).

